Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
نویسندگان
چکیده
The sensory and neural mechanisms underlying postural control have received much attention in recent decades but remain poorly understood. Our objectives were 1) to establish the decerebrate cat as an appropriate model for further research into the sensory mechanisms of postural control and 2) to observe what elements of the postural response can be generated by the brain stem and spinal cord. Ten animals were decerebrated using a modified premammillary technique, which consists of a premammillary decerebration that is modified with a vertical transection near the subthalamic nucleus to eliminate spontaneous locomotion. Horizontal support surface perturbations were applied to all four limbs and electromyographic recordings were collected from 14 muscles of the right hindlimb. Muscle activation was quantified with tuning curves, which compared increases and decreases in muscle activity to background and graphed the difference against perturbation direction. Parallels were drawn between these tuning curves, which were further quantified with a principal direction and breadth (range of directions of muscle activation), and data collected by other researchers from the intact animal. We found a strong similarity in the direction and breadth of the tuning curves generated in the decerebrate and intact cat. These results support our hypothesis that directionally specific tuning of muscles in response to support surface perturbations does not require the cortex, further indicating a strong role for the brain stem and spinal cord circuits in mediating directionally appropriate muscle activation patterns.
منابع مشابه
The decerebrate cat generates the essential features of the force constraint strategy.
Cats actively respond to horizontal perturbations of the supporting surface according to the force constraint strategy. In this strategy, the force responses fall into two groups oriented in either rostral and medial directions or caudal and lateral directions, rather than in strict opposition to the direction of perturbation. When the distance between forelimbs and hindlimbs is decreased, the ...
متن کاملThe mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.
Humans and cats respond to balance challenges, delivered via horizontal support surface perturbations, with directionally selective muscle recruitment and constrained ground reaction forces. It has been suggested that this postural strategy arises from an interaction of limb biomechanics and proprioceptive networks in the spinal cord. A critical experimental validation of this hypothesis is to ...
متن کاملTitle: the Mechanical Actions of Muscles Predict the Direction of Muscle Activation During
35 Humans and cats respond to balance challenges, delivered via horizontal support surface 36 perturbations, with directionally selective muscle recruitment and constrained ground reaction 37 forces. It has been suggested that this postural strategy arises from an interaction of limb 38 biomechanics and proprioceptive networks in the spinal cord. A critical experimental validation 39 of this hy...
متن کاملWeight support and balance during perturbed stance in the chronic spinal cat.
The intact cat maintains balance during unexpected disturbances of stance through automatic postural responses that are stereotyped and rapid. The extent to which the chronic spinal cat can maintain balance during stance is unclear, and there have been no quantitative studies that examined this question directly. This study examined whether the isolated lumbosacral cord of the chronic spinal ca...
متن کاملProprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats.
This study examined the influence of proprioceptive input from hip flexor muscles on the activity in hip flexors during the swing phase of walking in the decerebrate cat. One hindlimb was partially denervated to remove cutaneous input and afferent input from most other hindlimb muscles. Perturbations to hip movement were applied either by 1) manual resistance or assistance to swing or by 2) res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 6 شماره
صفحات -
تاریخ انتشار 2009